
A Method of Quick Edge Detection Based on Zynq

Rong Xie
Department of information, Beijing University of Technology

Beijing, China
xierong8989@163.com

Xiaoqin Feng
Department of information, Beijing University of Technology

Beijing, China
fengxqinx@163.com

Abstract—Most of existing image processing algorithms have
poor real-time performance in embedded device applications and
occupy too much software resources. In this paper, a fast edge
detection method is proposed based on Zynq platform. The
xfOpenCv acceleration library provided by Xilinx is used to
implement the edge detection algorithm. Specifically, the function
operation process is accelerated in the FPGA through the
acceleration constraint of a specific function implemented in the
xfOpenCv library. In the implementation process, the SDx
development environment is also used to simplify the function
hardware acceleration development process. The experimental
results show that our edge detection method takes less time than
other methods, and has better real-time performance with the
basically same detection results.

Keywords—edge detection, Zynq, hardware acceleration

I. INTRODUCTION

Image processing technology originated in 1920s. Early
image processing is mainly based on human objects to improve
the quality of images and meet the visual effects of people. In
the 1960s, with the development of electronic computer
technology, people began to use computers to process image
information. With the deepening of research, people began to
study how to use computers to analyze and interpret images [1].
Its process resembles human visual understanding of the
external world.

With the rapid development of electronic technology, more
and more traditional digital image processing system can be
realized through embedded system. Embedded system has a
series of advantages such as small size, low cost, low power
consumption and good reliability. The embedded image
processing system based on embedded technology has been
widely used in industrial testing, machine vision, aerospace,
military guidance, biomedicine, public safety, Car driving
auxiliary and other fields [2]. At present, embedded processors
used in image processing mainly include ARM, DSP and
FPGA. However, the existing embedded image processing
solutions based on a single ARM processor, DSP or FPGA can
no longer meet the requirements of high-performance
applications. Using multiple chips combined solution will often
result in complex hardware architecture, difficult development,
system instability and other issues. In response to the above
issues, the paper uses Xilinx Zynq all-programmable platform.
The platform is the first heterogeneous chip that tightly
integrates the high-performance ARM Cortex A9 hardcore and
the programmable logic FPGA. Through this combination,
Zynq not only has the transaction management, operating

system and other advantages in ARM processor, but also has
parallel processing, the dynamic reconfiguration and other
advantages in FPGA [3, 4, 5].

This paper designs a fast edge detection method under the
Zynq platform using the xfOpenCv kernel proposed by Xilinx.
The xfOpenCv is a library designed in Xilinx SDx
development environment. xfOpenCv is an improvement on
OpenCv made by Xillinx for embedded environments. Its
functions are mostly similar in functionality to their OpenCV
equivalent. It’s intended for application developers using Zynq-
7000 All Programmable SoC and Zynq UltraScale+ MPSoC
devices. It provides a software interface for computer vision
functions accelerated on an FPGA.

II. THE METHOD OF EDGE DETECT

A. Canny edge detection algorithm
This paper uses canny edge detection algorithm as an

example. Canny edge detection can be divided into four steps:
image smoothing, gradient and direction calculations, non-
maximum suppression, detect and connect edges. The first step:
image smoothing. The Canny algorithm uses a two-
dimensional Gaussian function to smooth the image, shown in
Equation (1).

2 2

2 2

1
(,) exp()

2 2

x yG x y
� �

�
� � (1)

In Equation (1)�� �� ��� �� ��	����
� ������ ���������� ������
��
�����������������������
���������������������������������
high accuracy of positioning but low signal to noise ratio. The
���������� ������ �� ��� �	�� ��� �����������������������
���� ��
select Gaussian filter parameters as required. The second step:
gradient and direction calculations. The Canny algorithm uses a
first-order differential operator to calculate the gradient
magnitude and gradient direction at each point of the smoothed
image to obtain the corresponding gradient magnitude image G
�
��������
��������
�������������������������������������
��

(,)i j in both directions are (,)xG i j and (,)yG i j , shown in

Equation (2) and (3).

x (,) ((, 1) (,) (1, 1) (1,)) / 2G i j I i j I i j I i j I i j� � � � � � � �
(2)

468

2018 IEEE 3rd International Conference on Cloud Computing and Internet of Things (CCIOT)

978-1-5386-7141-2/18/$31.00 ©2018 IEEE Dalian, China•October 20-21, 2018

Authorized licensed use limited to: Dalian University of Technology. Downloaded on October 24,2022 at 02:55:17 UTC from IEEE Xplore. Restrictions apply.

y (,) ((,) (1,) (, 1) (1, 1)) / 2G i j I i j I i j I i j I i j� � � � � � � �
(3)

At this point, the gradient magnitude and gradient direction
at point (,)i j are (,)G i j and (,)i j� , shown in Equation
(4) and (5).

2 2(,) (,) (,)x yG i j G i j G i j� � (4)

(,)
(,) arctan

(,)
x

y

G i ji j
G i j

�
� �

� 	
	

� �

(5)

The third step: non-maximum suppression. In order to
accurately position the edges, the ridge band in the gradient-
magnitude image G must be refined to only retain the local
maxima of the amplitude, ie non-maximal suppression (NMS).
The Canny algorithm interpolates along the gradient direction

(,)i j� in the neighborhood of 3 × 3 with the point (,)i j as
the center in the gradient image G. If the gradient value

(,)G i j at the point (,)i j is larger than the two adjacent

interpolation values in the direction of (,)i j� , the point

(,)i j is marked as a candidate edge point. Otherwise, it is
marked as a non-edge point. The fourth step: detect and
connect edges. The Canny algorithm uses double-threshold
method to detect and connect the final edge from candidate
edge points. The double threshold method first selects the high
threshold hT and the low threshold lT , and then starts

scanning the image. It is detected ny pixel point (,)i j
marked as a candidate edge point in the candidate edge image.
If the point (,)i j gradient magnitude (,)G i j is higher than

the high threshold hT , the point is considered to be an edge

point. If the point (,)i j gradient magnitude (,)G i j is lower

than the high threshold lT , the point is considered not to be an

edge point. For pixel points whose gradient amplitude is
between the two thresholds, they are regarded as suspected
edge points and need to be further judged according to the
connectivity of the edges. If there are edge points in the
adjacent pixels of the pixel point, the point is also considered to
be an edge point. Otherwise, it is considered to be a non-edge
point [6, 7, 8]. Through the four-step processing of the picture by
the canny algorithm, the edge of the picture can be well
detected. On the other hand, using the Canny operator edge
detection algorithm, the detection result image can also respond
better to the weaker edges.

B. The advantages of edge detection base Zynq
In the field of embedded image processing, due to the

constraints of system architecture, memory bandwidth and
other factors, it is difficult for traditional single-chip
microcomputer systems to meet the requirements of throughput

and computer performance at the same time. In 2011, Xilinx
introduced the Zynq-7000 series of scalable platforms that
integrate programmable logic with the dual-core ARM A9
processing system. With integrated ARM processors, Zynq-
7000 leverages existing embedded resources. The integrated
FPGA resources allow the Zynq-7000 to provide high-
performance computing solutions [9]. Based on the significant
advantages of the ZYNQ platform, the video image processing
system under the embedded platform mainly includes a
programmable logic (PL) and a processing system (PS). Part of
the PL is mainly responsible for the control logic of each
module, including the DMA transmission of video image data
and HD display. It can achieve hardware acceleration of video
image processing algorithms in the high-level synthesis tools.
PS part is mainly responsible for running Linux system on
ARM Cortex A9 [10].

In the general Zynq development process, the OpenCv
library needs to be ported to the Linux operating system
running in the arm kernel in Zynq. Running image processing
programs in Zynq need to cross-compile and call the ported
OpenCv library file to execute the program. In practical
applications, there is a problem that image processing methods
based on the ARM platform are too slow in running complex
algorithms [11, 12]. XfOpenCv library is Xilinx optimizes
OpenCv with FPGA. XfOpenCv can be used in the device
application development of Zynq-7000 All Programmable SoC
and Zynq UltraScale+ MPSoC. xfOpenCV library has been
designed to work in the SDx development environment, and
provides a software interface for computer vision functions
accelerated on an FPGA device. Figure 1 shows the
architecture of xfOpenCv in Zynq.

Zynq

Processing System(PS)

Programmable Logic(PL)

ARM Core
Linux

xfOpenCv

Central Interconnect
DDR

Controller

Data
Movers

AXI
Interconnects

xfOpenCv Interface

GP Port HP Port

Figure. 1 The architecture of xfOpenCv in Zynq

III. THE DESIGN OF A FAST EDGE DETECTION METHOD

This paper implements a fast edge detection method by
Xilinx xfOpenCv libraries. The implementation process applies
to the high-level synthesis tools Vivado HLS and Xilinx Zynq
SOC all-programmable processing platform, Vivado image
video library, and converts OpenCv to RTL through the
advanced synthesis tool Vivado HLS. Hardware acceleration of

469

Authorized licensed use limited to: Dalian University of Technology. Downloaded on October 24,2022 at 02:55:17 UTC from IEEE Xplore. Restrictions apply.

OpenCv program algorithms is implemented on Xilinx Zynq
SoC series all-programmable processing platforms. Take the
Canny edge detection as an example.

A. The implementation of edge detection method
This paper takes the Canny algorithm as examples. It is

based on Xilinx xfOpenCv library design and implementation.
In this method, the Mat data format needs to be converted to
the hls::stream data format. The edge detection process of the
Canny algorithm is divided into four steps: image filtering,
gradient calculation, non-maximal suppression, and connection
edges. After processing, it convert the hls::stream data type to
the Mat data format. The processing flow of Canny algorithm
figure shown in Figure 2. The data format of the input image
needs to be converted. The data format of the picture read from
by OpenCv is Mat data type. The Mat data type is converted
into xf::Mat type data through the copy operation. The xf::Mat
data format is an intermediate format that prepares for the next
data format conversion to hls::stream. The data of xf::Mat type
needs to assign each row and column data to the data of
hls::stream type. The assignment process uses two loop
processes: row loop and column loop. The two loop processes
are optimized using the existing optimization method in HLS.
There are two optimizations for the loop: the pipeline
constraint and the dataflow constraint. The pipeline constraint
causes the loop in the function to be pipelined. Pipelined
execution loops increase the parallelism of operations. Because
there is a data transfer relationship between the row loop and
the column loop, the dataflow constraint is added between the
two loops so that different loop bodies execute in parallel and
the throughput of the data can be improved. Converting Mat
data to the hls::steam data format allows the program to
achieve optimal performance during execution. After the data
format conversion is complete, the canny algorithm of edge
detection starts the edge detection part of the calculation. The

first step is the Gaussian filtering process. In the Gaussian
filtering process, we need to matrix convolute for each pixel of
the image. The matrix convolution can be divided by
ARRAY_PARTITION constraint. In Gaussian filtering
calculation, the kernel number of Gaussian convolution is three,
so the matrix can be divided into three parts by using
ARRAY_PARTITION constraint. The parallel bandwidth and
the computing power in the calculation process of the divided
matrix. On the other hand, the #pragma HLS RESOURCE
variable=buf core=RAM_S2P_BRAM constraint adds the
matrix buf to the RAM. It controls the delay of generating
BRAM to ensure the correct timing in the matrix operation.
The second step is to use the Sobel algorithm to calculate the
image gradient, which is the same as the Gaussian filtering
process. The gradient of the calculated graph also involves
matrix convolution operations. It also uses
ARRAY_PARTITION constraint to accelerate the convolution
of the matrix. The third step is non-maximum suppression. The
specific operation process is to perform a convolution
operation with a 3*3 filter kernel and the input image. The
calculation process also involves a convolution operation. The
ARRAY_PARTITION constraint is also used to accelerate the
matrix convolution operation speed. The fourth step is the
process of connecting the edges. It uses the high and low
thresholds set by the user to determine if the pixel is an edge
point. The computation process optimizes the loop process
through pipeline constraints, which improves parallel
computing capabilities. After the Canny algorithm is completed,
the image data format is converted from hls::stream to xf::mat,
and finally restored to the Mat type. The entire computational
acceleration process utilizes the parallelism of the FPGA. It
accelerates the matrix convolution and the cyclic process
through parallel operations that improves the speed of image
processing and the real-time performance in real-time video
processing.

Fig. 2 The processing flow of canny algorithm

B. The contrast experiment
This paper takes edge detection of Canny algorithm as an

example, and compares the time spent and the quality of the
results in the three cases. The experimental environment
configured on the PC is Ubuntu16.4 and OpenCv3.4.1. The
development board used in the experiment is the ZUC102
development board under the Zynq series of Xilinx. The
development board experimental environment is to transplant
the Linux system on the PS side. Cross-compilation of OpenCv

source code for the development board support library files
ported to the development board, so that the development
board can support cross-compiled OpenCv program. The
experiment needs to establish a Zynq-based development
project in SDx, and write the edge detection source code. The
most critical steps is to put hardware-accelerated parts of code
into hardware for acceleration. The part that can be accelerated
in this experiment is the Canny algorithm part. The functions
implemented in the hardware call FPGA resources at runtime
to achieve parallel acceleration, improve program execution

470

Authorized licensed use limited to: Dalian University of Technology. Downloaded on October 24,2022 at 02:55:17 UTC from IEEE Xplore. Restrictions apply.

speed, and save software resources. The results of edge detection in three environments are shown in Figure 3.

Fig. 3 The result of edge detection in three environments

Figure 3 (a) the original image input. (b) the result of PC
environment. (c) the result of unaccelerated in the development
board environment. (d) the result of accelerated in the
development. The edge detection process in the three
environments sets the same high and low thresholds, and the
result of the edge detection is basically the same. Programs that
are accelerated using the xfOpenCv library output the same
results as the general case. Comparing program runs takes time
in the same situation where edge detection results. Experiments
tested the time-consuming of edge detection for twenty
different pictures. Time-consuming in the three environments
are shown in Table 1.

TABLE I. TIME-CONSUMING IN THE THREE ENVIRONMENTS

Enviement PC OpenCv of
board

Ours

Highest time-consuming(s) 0.009230 0.072895 0.005337
Lowest time-consuming(s) 0.006940 0.060540 0.004096
Average time-consuming(s) 0.008030 0.066191 0.004170

It can be concluded that the accelerated algorithm has a
significant reduction in time-consuming. The use of xfOpenCv
to accelerate the canny algorithm for edge detection has some
advantage in time-consuming than other environments.

IV. SUMMARY

In this paper, a method of quick edge detection is proposed
based on Zynq By using the xfOpenCv library. Our method
uses existing acceleration methods to accelerate the edge
detection process, and utilizes the parallel computing
capabilities of FPGAs to speed up the edge detection process.
Compared with the operation of the edge detection algorithm in
other environments, our method can obtain the detection results
that are basically consistent with the general case. However, it
has greatly reduced the computational time.

Further studies beyond this work include improving the
accuracy of edge detect result and test the performance of other
algorithm in our acceleration environment, and applying
accelerated thinking to other applications.

REFERENCES

[1] Pauwels K, Tomasi M, Alonso J D, et al. A Comparison of FPGA and
GPU for Real-Time Phase-Based Optical Flow, Stereo, and Local Image
Features. IEEE Transactions on Computers. Vol. 61 (2012) No. 7, p.
999-1012.

[2] Farabet C, Martini B, Akselrod P, et al. Hardware accelerated
convolutional neural networks for synthetic vision systems IEEE
International Symposium on Circuits and Systems. IEEE, 2010, p, 257-
260.

[3] Appiah K, Hunter A, Dickinson P, et al. Accelerated hardware video
object segmentation: From foreground detection to connected
components labelling. Computer Vision & Image Understanding. Vol.
114 (2010) No. 11, p. 1282-1291.

[4] Honegger D, Oleynikova H, Pollefeys M. Real-time and low latency
embedded computer vision hardware based on a combination of FPGA
and mobile CPU. Ieee/rsj International Conference on Intelligent Robots
and Systems. IEEE, 2014, p. 4930-4935.

[5] Savarimuthu, Rajeeth T, Kj, et al. Real-time medical video processing,
enabled by hardware accelerated correlations. Journal of Real-Time
Image Processing. Vol. 6 (2011) No. 3, p. 187-197.

[6] Wei-Bo Y, Du Z S. An improved Kirsch human face image edge-
detection method based on canny lgorithm. International Conference on
Consumer Electronics, Communications and Networks. IEEE, 2011, p.
4740-4743.

[7] Pan Q S, Zhang Y, Yang Z M, et al.Design and Implementation of
Image Corner and Edge Detection System Based on Zynq. Computer
Science. 2017.

[8] Xin G, Ke C, Hu X,. et al. An improved Canny edge detection algorithm
for color image. IEEE International Conference on Industrial Informatics.
IEEE, 2012, p. 113-117.

[9] Ahmad A M, Lukowicz P, Cheng J. FPGA based hardware acceleration
of sensor matrix. ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct. ACM, 2016, p. 793-802.

[10] Dang V, Skadron K. Acceleration of Frequent Itemset Mining on FPGA
using SDAccel and Vivado HLS. IEEE, International Conference on
Application-Specific Systems, Architectures and Processors. IEEE, 2017,
p. 195-200.

[11] Russell M, Fischaber S. OpenCV based road sign recognition on Zynq.
IEEE International Conference on Industrial Informatics. IEEE, 2013, p.
596-601.

[12] Cortes A, Velez I, Irizar A. High level synthesis using Vivado HLS for
Zynq SoC: Image processing case studies Design of Circuits and
Integrated Systems. IEEE, p. 2017:1-6.

471

Authorized licensed use limited to: Dalian University of Technology. Downloaded on October 24,2022 at 02:55:17 UTC from IEEE Xplore. Restrictions apply.

