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Abstract—Most of existing image processing algorithms have 
poor real-time performance in embedded device applications and 
occupy too much software resources. In this paper, a fast edge 
detection method is proposed based on Zynq platform. The 
xfOpenCv acceleration library provided by Xilinx is used to
implement the edge detection algorithm. Specifically, the function 
operation process is accelerated in the FPGA through the 
acceleration constraint of a specific function implemented in the 
xfOpenCv library. In the implementation process, the SDx 
development environment is also used to simplify the function 
hardware acceleration development process. The experimental 
results show that our edge detection method takes less time than 
other methods, and has better real-time performance with the 
basically same detection results.
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I. INTRODUCTION

Image processing technology originated in 1920s. Early 
image processing is mainly based on human objects to improve 
the quality of images and meet the visual effects of people. In 
the 1960s, with the development of electronic computer 
technology, people began to use computers to process image 
information. With the deepening of research, people began to 
study how to use computers to analyze and interpret images [1]. 
Its process resembles human visual understanding of the 
external world. 

With the rapid development of electronic technology, more 
and more traditional digital image processing system can be 
realized through embedded system. Embedded system has a 
series of advantages such as small size, low cost, low power 
consumption and good reliability. The embedded image 
processing system based on embedded technology has been 
widely used in industrial testing, machine vision, aerospace, 
military guidance, biomedicine, public safety, Car driving 
auxiliary and other fields [2]. At present, embedded processors 
used in image processing mainly include ARM, DSP and 
FPGA. However, the existing embedded image processing 
solutions based on a single ARM processor, DSP or FPGA can 
no longer meet the requirements of high-performance 
applications. Using multiple chips combined solution will often 
result in complex hardware architecture, difficult development,
system instability and other issues. In response to the above 
issues, the paper uses Xilinx Zynq all-programmable platform. 
The platform is the first heterogeneous chip that tightly 
integrates the high-performance ARM Cortex A9 hardcore and 
the programmable logic FPGA. Through this combination, 
Zynq not only has the transaction management, operating 

system and other advantages in ARM processor, but also has 
parallel processing, the dynamic reconfiguration and other 
advantages in FPGA [3, 4, 5].  

This paper designs a fast edge detection method under the 
Zynq platform using the xfOpenCv kernel proposed by Xilinx. 
The xfOpenCv is a library designed in Xilinx SDx 
development environment. xfOpenCv is an improvement on 
OpenCv made by Xillinx for embedded environments. Its 
functions are mostly similar in functionality to their OpenCV 
equivalent. It’s intended for application developers using Zynq-
7000 All Programmable SoC and Zynq UltraScale+ MPSoC 
devices. It provides a software interface for computer vision 
functions accelerated on an FPGA.

II. THE METHOD OF EDGE DETECT

A. Canny edge detection algorithm
This paper uses canny edge detection algorithm as an 

example. Canny edge detection can be divided into four steps: 
image smoothing, gradient and direction calculations, non-
maximum suppression, detect and connect edges. The first step: 
image smoothing. The Canny algorithm uses a two-
dimensional Gaussian function to smooth the image, shown in 
Equation (1).
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select Gaussian filter parameters as required. The second step: 
gradient and direction calculations. The Canny algorithm uses a 
first-order differential operator to calculate the gradient 
magnitude and gradient direction at each point of the smoothed 
image to obtain the corresponding gradient magnitude image G 
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( , )i j in both directions are ( , )xG i j and ( , )yG i j , shown in 

Equation (2) and (3).
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At this point, the gradient magnitude and gradient direction 
at point ( , )i j are ( , )G i j and ( , )i j� , shown in Equation 
(4) and (5).
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The third step: non-maximum suppression. In order to 
accurately position the edges, the ridge band in the gradient-
magnitude image G must be refined to only retain the local 
maxima of the amplitude, ie non-maximal suppression (NMS). 
The Canny algorithm interpolates along the gradient direction 

( , )i j� in the neighborhood of 3 × 3 with the point ( , )i j as 
the center in the gradient image G. If the gradient value 

( , )G i j at the point ( , )i j is larger than the two adjacent 

interpolation values in the direction of ( , )i j� , the point 

( , )i j is marked as a candidate edge point. Otherwise, it is 
marked as a non-edge point. The fourth step: detect and 
connect edges. The Canny algorithm uses double-threshold 
method to detect and connect the final edge from candidate 
edge points. The double threshold method first selects the high 
threshold hT and the low threshold lT , and then starts 

scanning the image. It is detected ny pixel point ( , )i j
marked as a candidate edge point in the candidate edge image. 
If the point ( , )i j gradient magnitude ( , )G i j is higher than 

the high threshold hT , the point is considered to be an edge 

point. If the point ( , )i j gradient magnitude ( , )G i j is lower 

than the high threshold lT , the point is considered not to be an 

edge point. For pixel points whose gradient amplitude is 
between the two thresholds, they are regarded as suspected 
edge points and need to be further judged according to the 
connectivity of the edges. If there are edge points in the 
adjacent pixels of the pixel point, the point is also considered to 
be an edge point. Otherwise, it is considered to be a non-edge 
point [6, 7, 8]. Through the four-step processing of the picture by 
the canny algorithm, the edge of the picture can be well 
detected. On the other hand, using the Canny operator edge 
detection algorithm, the detection result image can also respond 
better to the weaker edges.

B. The advantages of edge detection base Zynq
In the field of embedded image processing, due to the 

constraints of system architecture, memory bandwidth and 
other factors, it is difficult for traditional single-chip 
microcomputer systems to meet the requirements of throughput 

and computer performance at the same time. In 2011, Xilinx 
introduced the Zynq-7000 series of scalable platforms that 
integrate programmable logic with the dual-core ARM A9 
processing system. With integrated ARM processors, Zynq-
7000 leverages existing embedded resources. The integrated 
FPGA resources allow the Zynq-7000 to provide high-
performance computing solutions [9]. Based on the significant 
advantages of the ZYNQ platform, the video image processing 
system under the embedded platform mainly includes a 
programmable logic (PL) and a processing system (PS). Part of 
the PL is mainly responsible for the control logic of each 
module, including the DMA transmission of video image data 
and HD display. It can achieve hardware acceleration of video 
image processing algorithms in the high-level synthesis tools.
PS part is mainly responsible for running Linux system on 
ARM Cortex A9 [10].  

In the general Zynq development process, the OpenCv 
library needs to be ported to the Linux operating system 
running in the arm kernel in Zynq. Running image processing 
programs in Zynq need to cross-compile and call the ported 
OpenCv library file to execute the program. In practical 
applications, there is a problem that image processing methods 
based on the ARM platform are too slow in running complex 
algorithms [11, 12]. XfOpenCv library is Xilinx optimizes 
OpenCv with FPGA. XfOpenCv can be used in the device 
application development of Zynq-7000 All Programmable SoC 
and Zynq UltraScale+ MPSoC. xfOpenCV library has been 
designed to work in the SDx development environment, and 
provides a software interface for computer vision functions 
accelerated on an FPGA device. Figure 1 shows the 
architecture of xfOpenCv in Zynq.
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Figure. 1 The architecture of xfOpenCv in Zynq

III. THE DESIGN OF A FAST EDGE DETECTION METHOD

This paper implements a fast edge detection method by 
Xilinx xfOpenCv libraries. The implementation process applies 
to the high-level synthesis tools Vivado HLS and Xilinx Zynq 
SOC all-programmable processing platform, Vivado image 
video library, and converts OpenCv to RTL through the 
advanced synthesis tool Vivado HLS. Hardware acceleration of 
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OpenCv program algorithms is implemented on Xilinx Zynq 
SoC series all-programmable processing platforms. Take the 
Canny edge detection as an example.  

A. The implementation of edge detection method
This paper takes the Canny algorithm as examples. It is 

based on Xilinx xfOpenCv library design and implementation. 
In this method, the Mat data format needs to be converted to 
the hls::stream data format. The edge detection process of the 
Canny algorithm is divided into four steps: image filtering, 
gradient calculation, non-maximal suppression, and connection 
edges. After processing, it convert the hls::stream data type to 
the Mat data format. The processing flow of Canny algorithm 
figure shown in Figure 2. The data format of the input image 
needs to be converted. The data format of the picture read from 
by OpenCv is Mat data type. The Mat data type is converted 
into xf::Mat type data through the copy operation. The xf::Mat 
data format is an intermediate format that prepares for the next 
data format conversion to hls::stream. The data of xf::Mat type 
needs to assign each row and column data to the data of 
hls::stream type. The assignment process uses two loop 
processes: row loop and column loop. The two loop processes 
are optimized using the existing optimization method in HLS. 
There are two optimizations for the loop: the pipeline 
constraint and the dataflow constraint. The pipeline constraint 
causes the loop in the function to be pipelined. Pipelined 
execution loops increase the parallelism of operations. Because 
there is a data transfer relationship between the row loop and 
the column loop, the dataflow constraint is added between the 
two loops so that different loop bodies execute in parallel and 
the throughput of the data can be improved. Converting Mat 
data to the hls::steam data format allows the program to 
achieve optimal performance during execution. After the data 
format conversion is complete, the canny algorithm of edge 
detection starts the edge detection part of the calculation. The 

first step is the Gaussian filtering process. In the Gaussian 
filtering process, we need to matrix convolute for each pixel of 
the image. The matrix convolution can be divided by 
ARRAY_PARTITION constraint. In Gaussian filtering 
calculation, the kernel number of Gaussian convolution is three, 
so the matrix can be divided into three parts by using 
ARRAY_PARTITION constraint. The parallel bandwidth and 
the computing power in the calculation process of the divided 
matrix. On the other hand, the #pragma HLS RESOURCE 
variable=buf core=RAM_S2P_BRAM constraint adds the 
matrix buf to the RAM. It controls the delay of generating 
BRAM to ensure the correct timing in the matrix operation.
The second step is to use the Sobel algorithm to calculate the 
image gradient, which is the same as the Gaussian filtering 
process. The gradient of the calculated graph also involves 
matrix convolution operations. It also uses 
ARRAY_PARTITION constraint to accelerate the convolution 
of the matrix. The third step is non-maximum suppression. The 
specific operation process is to perform a convolution 
operation with a 3*3 filter kernel and the input image. The 
calculation process also involves a convolution operation. The 
ARRAY_PARTITION constraint is also used to accelerate the 
matrix convolution operation speed. The fourth step is the 
process of connecting the edges. It uses the high and low 
thresholds set by the user to determine if the pixel is an edge 
point. The computation process optimizes the loop process 
through pipeline constraints, which improves parallel 
computing capabilities. After the Canny algorithm is completed, 
the image data format is converted from hls::stream to xf::mat, 
and finally restored to the Mat type. The entire computational 
acceleration process utilizes the parallelism of the FPGA. It 
accelerates the matrix convolution and the cyclic process 
through parallel operations that improves the speed of image 
processing and the real-time performance in real-time video 
processing.

Fig. 2 The processing flow of canny algorithm

B. The contrast experiment
This paper takes edge detection of Canny algorithm as an 

example, and compares the time spent and the quality of the 
results in the three cases. The experimental environment 
configured on the PC is Ubuntu16.4 and OpenCv3.4.1. The 
development board used in the experiment is the ZUC102 
development board under the Zynq series of Xilinx. The 
development board experimental environment is to transplant 
the Linux system on the PS side. Cross-compilation of OpenCv 

source code for the development board support library files 
ported to the development board, so that the development 
board can support cross-compiled OpenCv program. The 
experiment needs to establish a Zynq-based development 
project in SDx, and write the edge detection source code. The 
most critical steps is to put hardware-accelerated parts of code 
into hardware for acceleration. The part that can be accelerated 
in this experiment is the Canny algorithm part. The functions 
implemented in the hardware call FPGA resources at runtime 
to achieve parallel acceleration, improve program execution 
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speed, and save software resources. The results of edge detection in three environments are shown in Figure 3.  

Fig. 3 The result of edge detection in three environments

Figure 3 (a) the original image input. (b) the result of PC 
environment. (c) the result of unaccelerated in the development 
board environment. (d) the result of accelerated in the 
development. The edge detection process in the three 
environments sets the same high and low thresholds, and the 
result of the edge detection is basically the same. Programs that 
are accelerated using the xfOpenCv library output the same 
results as the general case. Comparing program runs takes time 
in the same situation where edge detection results. Experiments 
tested the time-consuming of edge detection for twenty 
different pictures. Time-consuming in the three environments 
are shown in Table 1. 

TABLE I. TIME-CONSUMING IN THE THREE ENVIRONMENTS

Enviement PC OpenCv of 
board 

Ours

Highest time-consuming(s) 0.009230 0.072895 0.005337
Lowest time-consuming(s) 0.006940 0.060540 0.004096
Average time-consuming(s) 0.008030 0.066191 0.004170

It can be concluded that the accelerated algorithm has a 
significant reduction in time-consuming. The use of xfOpenCv 
to accelerate the canny algorithm for edge detection has some 
advantage in time-consuming than other environments.

IV. SUMMARY

In this paper, a method of quick edge detection is proposed 
based on Zynq By using the xfOpenCv library. Our method 
uses existing acceleration methods to accelerate the edge 
detection process, and utilizes the parallel computing 
capabilities of FPGAs to speed up the edge detection process. 
Compared with the operation of the edge detection algorithm in 
other environments, our method can obtain the detection results 
that are basically consistent with the general case. However, it 
has greatly reduced the computational time. 

Further studies beyond this work include improving the 
accuracy of edge detect result and test the performance of other 
algorithm in our acceleration environment, and applying 
accelerated thinking to other applications.
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